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Abstract: Oxidation of the 3,4-dihydrodiols of benzacridines yielded pre- 
ferably N-oxides in the [alseries and in the 
thus suggesting different metabolic pathways LJ 

c series the bay region epoxide 
or noncarcinogenic and carcino- 

genic azaarenes. 

Since a long time it is known that the substituted benz[c]acridines are 

more carcinogenic than the corresponding substituted benz[aJacridines'. In 

contrast to noncarcinogenic l2-methylbenzra] acridine 7-methylbenz c acridine Cl 
was found to exhibit strong carcinogenic activity I,2 . Recently we synthesized 

the 3,4-dihydrodiols 1 and 2 of the parent heterocycles3 which were chosen as 

model systems to elucidate the oxidative metabolism of polycyclic azaarenes 

(PAA) with regard to the biological difference of the [a] and [c] series. In 

analogy to polycyclic aromatic hydrocarbons (PAH) 1 and 2 are supposed to be 

proximate carcinogenic metabolites of PAA. 

Mutagenicity (Ames) tests of 1 and 2 indicate that after metabolic acti- - - 

vation diol 1 is not mutagenic in contrast to diol 2 
4 

-. The reason for this may 

be either that dial 1 is not metabolized in vivo to the corresponding epoxide 

(different metabolic pathways of 1 and 2) or that the diol epoxide is not 

mutagenic (different mutagenic activities of the epoxides of 1 and 2). To 

gain insight into these correlations we synthesized the bay region epoxides 

of 1 and 2 _. 

On reaction of 1 with a 10 molar excess of m-chloroperbenzoic acid in 

dry THF 3~,4$-dihydroxy-1~,2a-epoxy-1,2,3,4-teterahydrobenz[aJacridine 7 oxide 

2 was formed in 69 % yield as a yellow fluorescent solid of dec. point 185OC. 

The N-oxide structure of the product was deduced from the mass spectrum (M+ = 

m/e 295) and the 'H-NMR data (table l), i. e. the high field resonance of the 
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3 meso proton H-12 as compared with starting material . If we added only equi- 

molar amounts of peracid two other reaction products were obtained together 

with 5 _. After chromatography on silica gel with ethyl acetate/THF a yellow 

solid decomposing at 115OC was isolated in 40 % yield representing the bay 

region epoxide of 1 (3). The third product was trans-3,4-dihydroxy-3,4-di- 

hydrobenz[a] acridine 7-oxide 4, isolated in 23 % yield, a dark yellow solid 

decomposing at 10S°C. 2 and 3 could be oxidized further to epoxy N-oxide 5. 

1 

O 
4 - 

0- 

5 

The cis configuration of the epoxide ring with regard to the neighbouring 

hydroxy group is shown in the 
1 
H-NMR spectra of 2 and 5 by the coupling con- 

stant 12,3 = 1 Hz (Itrans should be ~2.5 Hz5) and is due to the directing in- 

fluence of the allylic hydroxy function6. The chemical shifts of protons H-l.. 

H-4 (table 1) in compunds 2 and S are consistent with the data reported for 

the 3,4-diol-1,2-epoxide of benz[a]anthracene7. That 4 represents the N-oxide 

of 1 can be seen from the resonance of H-12 at higher field as compared to 
3 the chemical shift of H-12 in diol 1 (A6 = 0.6 ppm) . 

A completely different oxidation pattern was found for the dihydrodiol 2 

of benz[c]acridine. On reaction with a 10 molar excess of m-chloroperbenzoic 

acid under the same conditions as described for J_ dihydrodiol 2 exclusively 

formed the epoxide 5, a yellow solid decomposing above 169OC, in 72 % yield. 

0 
+f 

OH 
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The structure of 5 is documented by its mass spectrum CM+ = m/e 279) and 

the 'H-NMR data (table 1). The aliphatic protons of diol epoxides 3, 2 and 5 

exhibit similar chemical shifts except for H-l the resonance of which is 

significantly shifted to lower field in compound 5 due to the anisotropy 

effect of the nitrogen atom in peri position to H-l. 

Even with the strong oxidizing agent 3,5-dinitroperbenzoic acid' no 

N-oxide was obtained from 2. The resistance of 2 towards N-oxidation could 

have been suspected to result from a reduced electron density of the nitrogen 

in the [c]system although both 1 and 2 are acridine derivatives generally 

exhibiting enough basicity for N-oxidation 
9 
. To test this we determined the 

basicity constants of 1 and 2 by the UV spectroscopic method. pK values of 

1 and 2 were found to be 5.19 + 0.05 and 4.32 + 0.05, respectively. From the 

fact that even weak basic heterocycles, e. g. 2-bromopyridine with a pK value 

of 0.9 can be N-oxidized with peracids 
10 

it seems rather improbable that the 

small difference between the basicities of 1 and 2 should account for the - 

different oxidation pattern of 2. N-oxidation reactions are known to be sensi- 

tive to steric hindrance 
11 

, as e. g. 2,6_diphenylpyridine yielded the N-oxide 
12 

only in very low amount as compared to 2-phenylpyridine . In the case of 
13 

8-methyl-2-phenylquinoline no oxidation product could be obtained at all . 

Benz[a]phenazine was converted to the 7-oxide in good yield whereas further 

oxidation of the nitrogen in 12-position could be achieved only under drastic 

Table 1: 'H-NMR SPECTROSCOPIC DATA 0E TRANS DIOL EPOXIDES (N-OXIDES) OF 

BENz[A]- AND -[c] ACRIDINE~) 

H-l H-2 H-3 H-4 H-7/12 H-5.-11 
'l,2 '2,3 '3,4 

3,4-dihydrobenz 
acridine 

3a,4$-dihydroxy- 
la,2a-epoxy-1,2,3,4- 
tetrahydrobenz[a]- 
acridine 3 

3a,48-dihydroxy- 
lCt,2a-epoxy-1,2,3,4- 
tetrahydrobenz[a]- 
acridine 7-oxide 5 - 

3a,48-dihydroxy- 
la,2a-epoxy-1,2,3,4- 
tetrahydrobenz[c]- 
acridine 6 - 

7.49 6.36 4.46 4.83 9.00 

5.16 3.89 3.96 4.69 9.80 

5.09 3.85 3.95 4.53 9.30 

5.70 4.10 4.03 4.77 9.10 

7.6-8.7 

7.3-8.4 

7.6-8.9 

7.5-8.4 

10.2 2.4 

4.5 Cl 

4.8 <I 

4.6 <l 

10.0 

8.4 

8.4 

7.8 

a) 90 MHz, chemical shifts in ppm (6) with TMS as internal standard: coupling 

constants I in Hz; spectra were recorded in DMSO-d6/D20. 
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14 
conditions in very low yield . In analogy we suppose steric hindrance by the 

angular ring peri to the nitrogen atom to be responsible for the inertness of 

2 towards N-oxidation. 

If we extend these findings on the oxidative metabolism of the parent 

heterocycles, benz[a]- and -[c]acridine, it seems plausible that benz[a]acri- 

dine should be metabolized predominantly to N-oxide derivatives whereas benz- 

[I c acridine and PAA with bulky substituents peri to the nitrogen atom (i. e. 
nitrogen next to the bay region) are prohibited to form N-oxides in vivo. For- 

mation of water soluble N-oxides in vivo could be an effective detoxification 

mechanism for PAA 
15 . The main metabolic pathway of nicotine and several drugs 

16 with pyridine moiety proceeds via N-oxidation . It is obvious that different 

metabolic pathways for the [a] and [c] series of azaarenes will result in dif- 

ferent carcinogenic activities. To further test this hypothesis the diol 

epoxides 2 and 5 are subJected to mutagenicity studies at present4. 
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