N-OXIDATION VERSUS EPOXIDATION IN POLYCYCLIC AZAARENES

Ulrich Engelhardt[§] and Maria Schaefer-Ridder^{§+}

[§] Inst. für Org. Chemie der Universität Köln, Greinstr. 4, D-5000 Köln 41 ^{§+}Max-Planck-Institut für Biochemie, 8033 Martinsried/München, FRG

Abstract: Oxidation of the 3,4-dihydrodiols of benzacridines yielded preferably N-oxides in the [a]series and in the [c]series the bay region epoxide thus suggesting different metabolic pathways for noncarcinogenic and carcinogenic azaarenes.

Since a long time it is known that the substituted benz[c]acridines are more carcinogenic than the corresponding substituted benz[a]acridines¹. In contrast to noncarcinogenic 12-methylbenz[a]acridine 7-methylbenz[c]acridine was found to exhibit strong carcinogenic activity^{1,2}. Recently we synthesized the 3,4-dihydrodiols <u>1</u> and <u>2</u> of the parent heterocycles³ which were chosen as model systems to elucidate the oxidative metabolism of polycyclic azaarenes (PAA) with regard to the biological difference of the [a] and [c] series. In analogy to polycyclic aromatic hydrocarbons (PAH) <u>1</u> and <u>2</u> are supposed to be proximate carcinogenic metabolites of PAA.

Mutagenicity (Ames) tests of $\underline{1}$ and $\underline{2}$ indicate that after metabolic activation diol $\underline{1}$ is not mutagenic in contrast to diol $\underline{2}^4$. The reason for this may be either that diol $\underline{1}$ is not metabolized in vivo to the corresponding epoxide (different metabolic pathways of $\underline{1}$ and $\underline{2}$) or that the diol epoxide is not mutagenic (different mutagenic activities of the epoxides of $\underline{1}$ and $\underline{2}$). To gain insight into these correlations we synthesized the bay region epoxides of $\underline{1}$ and $\underline{2}$.

On reaction of <u>1</u> with a 10 molar excess of m-chloroperbenzoic acid in dry THF $3\alpha,4\beta$ -dihydroxy-1 $\alpha,2\alpha$ -epoxy-1,2,3,4-teterahydrobenz[a]acridine 7 oxide <u>5</u> was formed in 69 % yield as a yellow fluorescent solid of dec. point $185^{\circ}C$. The N-oxide structure of the product was deduced from the mass spectrum (M⁺ = m/e 295) and the ¹H-NMR data (table 1), i. e. the high field resonance of the

4687

meso proton H-12 as compared with starting material³. If we added only equimolar amounts of peracid two other reaction products were obtained together with <u>5</u>. After chromatography on silica gel with ethyl acetate/THF a yellow solid decomposing at 115° C was isolated in 40 % yield representing the bay region epoxide of <u>1</u> (<u>3</u>). The third product was trans-3,4-dihydroxy-3,4-dihydrobenz[a] acridine 7-oxide <u>4</u>, isolated in 23 % yield, a dark yellow solid decomposing at 105° C. <u>3</u> and <u>4</u> could be oxidized further to epoxy N-oxide <u>5</u>.

The cis configuration of the epoxide ring with regard to the neighbouring hydroxy group is shown in the ¹H-NMR spectra of <u>3</u> and <u>5</u> by the coupling constant $I_{2,3} = 1 \text{ Hz}$ (I_{trans} should be <2.5 Hz⁵) and is due to the directing influence of the allylic hydroxy function⁶. The chemical shifts of protons H-1.. H-4 (table 1) in compunds <u>3</u> and <u>5</u> are consistent with the data reported for the 3,4-diol-1,2-epoxide of benz[a] anthracene⁷. That <u>4</u> represents the N-oxide of <u>1</u> can be seen from the resonance of H-12 at higher field as compared to the chemical shift of H-12 in diol <u>1</u> ($\Delta \delta = 0.6 \text{ ppm}$)³.

A completely different oxidation pattern was found for the dihydrodiol $\underline{2}$ of benz[c]acridine. On reaction with a 10 molar excess of m-chloroperbenzoic acid under the same conditions as described for $\underline{1}$ dihydrodiol $\underline{2}$ exclusively formed the epoxide $\underline{6}$, a yellow solid decomposing above 169^oC, in 72 % yield.

2

6

The structure of <u>6</u> is documented by its mass spectrum ($M^+ = m/e 279$) and the ¹H-NMR data (table 1). The aliphatic protons of diol epoxides <u>3</u>, <u>5</u> and <u>6</u> exhibit similar chemical shifts except for H-1 the resonance of which is significantly shifted to lower field in compound <u>6</u> due to the anisotropy effect of the nitrogen atom in peri position to H-1.

Even with the strong oxidizing agent 3,5-dinitroperbenzoic acid⁸ no N-oxide was obtained from 2. The resistance of 2 towards N-oxidation could have been suspected to result from a reduced electron density of the nitrogen in the [c] system although both 1 and 2 are acridine derivatives generally exhibiting enough basicity for N-oxidation⁹. To test this we determined the basicity constants of 1 and 2 by the UV spectroscopic method. pK values of 1 and 2 were found to be 5.19 \pm 0.05 and 4.32 \pm 0.05, respectively. From the fact that even weak basic heterocycles, e. g. 2-bromopyridine with a pK value of 0.9 can be N-oxidized with peracids¹⁰ it seems rather improbable that the small difference between the basicities of 1 and 2 should account for the different oxidation pattern of 2. N-oxidation reactions are known to be sensitive to steric hindrance¹¹, as e. g. 2,6-diphenylpyridine yielded the N-oxide only in very low amount as compared to 2-phenylpyridine¹². In the case of 8-methyl-2-phenylquinoline no oxidation product could be obtained at all¹³. Benz[a] phenazine was converted to the 7-oxide in good yield whereas further oxidation of the nitrogen in 12-position could be achieved only under drastic

<u>Table 1:</u> ¹H-NMR SPECTROSCOPIC DATA OF TRANS DIOL EPOXIDES (N-OXIDES) OF BENZ[A] - AND -[C]ACRIDINE^{a)}

H-1 H-2 H-3 H-4 H-7/12 H-5..11 I_{1,2} I_{2,3} I_{3,4}

trans-3,4-dihydroxy-3,4-dihydrobenz[a]-acridine 7-oxide 4 7.49 6.36 4.46 4.83 9.00 7.6-8.7 10.2 2.4 10.0 3a,48-dihydroxy-1α,2α-epoxy-1,2,3,4-tetrahydrobenz[a]-5.16 3.89 3.96 4.69 9.80 7.3-8.4 4.5 <1 8.4 acridine 3 3α , 4β -dihydroxy-1a,2a-epoxy-1,2,3,4-tetrahydrobenz[a]-5.09 3.85 3.95 4.53 9.30 7.6-8.9 4.8 <1 8.4 acridine 7-oxide 5 3a,48-dihydroxy-1a, 2a-epoxy-1, 2, 3, 4-5.70 4.10 4.03 4.77 9.10 7.5-8.4 4.6 <1 7.8 tetrahydrobenz c acridine 6

a) 90 MHz, chemical shifts in ppm (δ) with TMS as internal standard; coupling constants I in Hz; spectra were recorded in DMSO-d₆/D₂O.

conditions in very low yield¹⁴. In analogy we suppose steric hindrance by the angular ring peri to the nitrogen atom to be responsible for the inertness of 2 towards N-oxidation.

If we extend these findings on the oxidative metabolism of the parent heterocycles, benz[a] - and -[c]acridine, it seems plausible that benz[a]acridine should be metabolized predominantly to N-oxide derivatives whereas benz-[c]acridine and PAA with bulky substituents peri to the nitrogen atom (i. e. nitrogen next to the bay region) are prohibited to form N-oxides in vivo. Formation of water soluble N-oxides in vivo could be an effective detoxification mechanism for PAA¹⁵. The main metabolic pathway of nicotine and several drugs with pyridine moiety proceeds via N-oxidation¹⁶. It is obvious that different metabolic pathways for the [a] and [c]series of azaarenes will result in different carcinogenic activities. To further test this hypothesis the diol epoxides $\underline{3}$ and $\underline{6}$ are subjected to mutagenicity studies at present⁴.

References

- 1 A. Lacassagne, N. P. Buu-Hoi, R. Daudel and F. Zajdela, Adv. Cancer Res. <u>4</u>, 315 (1956).
- H. R. Glatt, H. Schwind, L. M. Schechtman, S. Beard, R. E. Kouri,
 F. Zajdela, A. Croisy, F. Perin, P. C. Jacquignon and F. Oesch in "Short Term Test Systems for Detecting Carcinogens", ed. by K. H. Norpoth and
 R. C. Garner, Springer Verlag, Berlin(1980).
- 3 M. Schaefer-Ridder and U. Engelhardt, J. Org. Chem. 46, 2895 (1981).
- 4 Mutagenicity tests are carried out in collaboration with D. M. Jerina (NIH)
- 5 H. Yagi, O. Hernandez and D. M. Jerina, J. Amer. Chem. Soc. 97, 6881 (1975).
- 6 G. Berti in "Topics in Stereochemistry", ed. by N. Allinger and E. L. Aliel, Vol 7, 93 (1973).
- 7 R. E. Lehr, M. Schaefer-Ridder and D. M. Jerina, Tetrahedron Lett. <u>1977</u>, 539.
- 8 W. H. Rastetter, Th. J. Richard and M. D. Lewis, J. Org. Chem. <u>43</u>, 3163 (1978).
- 9 A. Albert, R. Goldacre and J. Phillips, J. Chem. Soc. 1948, 2240.
- 10 E. Shaw, J. Bernstein, K. Losee and W. A. Lott, J. Amer. Chem. Soc. <u>72</u>, 4362 (1950).
- 11 A. R. Katritzky and J. M. Lagowski, "Chemistry of the Heterocyclic N-Oxides", Academic Press, London 1971.
- 12 H. Gilman and J. T. Edward, Can. J. Chem. 31, 457 (1953).
- 13 H. Gilman, J. L. Towle and S. M. Spatz, J. Amer. Chem. Soc. <u>68</u>, 2017 (1946).
- 14 I. J. Pachter and M. C. Kloetzel, J. Amer. Chem. Soc. <u>73</u>, 4958 (1951).
- 15 J. W. Gorrod, Xenobiotica 1, 349 (1971),
- 16 L. A. Damani, L. G. Disley and J. W. Gorrod, in "Biological Oxidation of Nitrogen", ed. by J. W. Gorrod, Amsterdam 1978, pp 157.

(Received in Germany 18 August 1981)